Formal Verification of an Automotive Scenario in
Service-Oriented Computing

Maurice H. ter Beek
ISTI-CNR
Via G. Moruzzi 1
56124 Pisa, Italy

terbeek@isti.cnr.it

Stefania Gnesi
ISTI-CNR
Via G. Moruzzi 1
56124 Pisa, ltaly

gnesi@isti.cnr.it

*k
Nora Koch
Cirquent GmbH
Zamdorfer StraBe 120
81677 Miinchen, Germany
nora.koch@cirquent.de

Franco Mazzanti
ISTI-CNR
Via G. Moruzzi 1
56124 Pisa, ltaly
mazzanti@isti.cnr.it

ABSTRACT

We report on the successful application of academic expe-
rience with formal modelling and verification techniques to
an automotive scenario from the service-oriented computing
domain. The aim of this industrial case study is to verify
a priori, thus before implementation, certain design issues.
The specific scenario is a simplified version of one of possible
new services for car drivers to be provided by the in-vehicle
computers.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking

General Terms

Experimentation, Verification

Keywords

Automotive systems, Service-Oriented Computing, Model
checking

1. INTRODUCTION

When a new vehicle is developed in an automotive com-
pany, 80% of the innovation cost is due to software systems.
The total cost of a finished vehicle consists for 25% of soft-
ware costs and the vehicle contains more than 70 Electronic

*Nora Koch is also affiliated with Ludwig-Maximilians-
Universitét, Oettingenstr. 67, 80538 Miinchen, Germany.
kochn@pst.ifi.lmu.de.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE’08, May 10-18, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

Control Units, which each require their own specific soft-
ware [29]. Naturally, these units have to interplay in differ-
ent settings and, consequently, there is great potential for
Service-Oriented Computing (SOC) in automotive systems
(think, e.g. of orchestration of services for driver assistance
and of infotainment). In fact, there is a lot of activity in
this direction.! Moreover, the highly advanced mobile tech-
nology available nowadays allows car drivers telephone and
Internet access within their vehicles, giving rise to a variety
of new services for the automotive domain. In addition, the
main reason for introducing service-oriented software engi-
neering approaches is the complex and flexible networking
of a continuously increasing number of car functionalities.
In this paper, we consider a scenario that offers a car
driver one such a service, viz. on road assistance to contact
a garage, a tow truck and a rental car when stranded with
a malfunctioning vehicle. We report on the lessons that we
have learned from applying formal modelling and verifica-
tion techniques during the requirements analysis phase of
this on road assistance scenario. The goal of this case study
is to verify a priori, i.e. before any implementation, certain
design issues related to functional requirements. To this aim,
the requirements model of this scenario [22]—a high-level
UML [35] specification that makes use of domain-specific ex-
tensions [23] like stereotypes to deal with compensations—
is formally defined as a set of communicating UML state
machines. The on-the-fly model checker UMC [34] is subse-
quently used to verify a set of correctness properties formal-
ized in the action- and state-based temporal logic UCTL [3].
Model checking deals with the automatic analysis of cor-
rectness properties of system designs [6]. Such verifications
are exhaustive, i.e. all possible input combinations and states
are taken into account, and a counterexample is usually gen-
erated in case a certain property does not hold. Correctness
properties reflect typical (un)desired behaviour of the sys-
tem under scrutiny. Model checking allows the evaluation of
design alternatives before implementation and validation—
and not just afterwards. In this way, design errors—which

L«Mitsubishi Electric Corporation, IBM and ILS Technol-
ogy LLC [...] are delivering a service oriented architecture
(SOA) solution that is specifically designed for the automo-
tive manufacturing industry.” (Press release, 31 Jan. 2008)

constitute up to 40% of software errors and are among the
most expensive ones to resolve if discovered after implemen-
tation [24]—can be detected in the design phase, leading to
considerable reductions in cost and to improved quality.

We begin this paper with brief descriptions of the methods
and tools used for our case study, which is itself introduced
in the subsequent section. We then discuss the formal model
of our case study and the properties we verified, followed by
the lessons we learned from this case study. Finally, we
conclude with a discussion of future work.

2. METHODS AND TOOLS

In this section, we briefly describe the methods and tools
that we use for our case study, viz. a UML Profile for SOC,
the temporal logic UCTL and the model checker UMC.

2.1 A UML Profile for SOC

We assume some familiarity with the basics of the Uni-
fied Modelling Language UML [35], as it is the de facto
industrial standard for modelling and documenting software
systems. The reader is referred to [37] and the references
therein for details on SOC.

In order to provide a domain-specific language in the con-
text of SOC, the specification language UML 2.0 has been
extended by using the available extension mechanisms. The
result is a so-called UML Profile. The extension consists of
a set of stereotypes and constraints specified in the Object
Constraint Language OCL [35]. Stereotypes enrich models
with service-oriented concepts, including structural and be-
havioural aspects of SOC as well as non-functional notions.
Constraints allow for a more precise semantics of the newly
introduced model elements.

The structure of a service-oriented architecture can be vi-
sualized by UML deployment and structure diagrams. De-
ployment diagrams are used to represent the “usually nested”
nodes of the architecture, i.e. hardware devices and the soft-
ware execution environment. Nodes are connected through
communication paths that show the type of communication:
permanent, temporary or on the fly. The last type charac-
terizes service-oriented systems that require service discov-
ery and provide loose binding of software. The stereotypes
<permanent>, <temporary> and <on the fly> are defined for
these three types of connections between nodes.

Structure diagrams, on the other hand, show the inter-
play of components, their ports and their interfaces. The
UML Profile for SOC introduces services implemented as
ports of components. Each service may contain a required
and a provided interface. In turn, interfaces contain one or
more operations, which may contain an arbitrary number of
parameters. A service has a service description and a ser-
vice provider, and may have one or more service requesters.
These concepts, and the relationships among them, are rep-
resented by a metamodel [23], which provides the basis for
the definition of the UML Profile. For each class of the
metamodel, a stereotype is defined and relationships are ex-
pressed by constraints. The stereotypes that are used to
build structure diagrams of service-oriented systems are as
follows: <service>, <service interface> and <service description>.
An example of a structure diagram is shown in Section 4.

Behavioural aspects in SOC comprise the implementation
of composite components. Most of the behaviour of such
components results from the orchestration of simpler ser-
vices (see e.g. the UML activity diagram in Figure 1). The

focus is on service interactions, long-running transactions,
and their compensation and exception handling. To model
orchestration, we use a UML activity diagram containing
service-aware elements, such as <scope>, <send>, <receive>,
and <compensate>> actions. A scope is a structured activ-
ity that groups actions, which may have associated com-
pensation and exception handlers. Scopes and the corre-
sponding handlers are linked by specific compensation and
exception edges (the stereotypes <compensation edge> and
<exception edge>). Scopes include stereotyped actions like
send, receive, send and receive, compensate and compen-
sate all. The stereotype <send> is used to model the sending
of messages; <received> models the reception of a message
blocking until the message is received; <send and receive> is
a shorthand for a sequential order of a send action and a
receive action. Container for data to be send or received are
modelled by <send pin>s and <receive pin>s. Long-running
transactions, like those provided by services, require the
management of compensation. Therefore, the UML Pro-
file contains <compensate> and <compensate all> actions. The
former triggers the execution of the compensation defined for
a scope or activity, the latter for the current scope. Com-
pensation is called on all subscopes in the reverse order of
their completion.

For details about the UML extension for service-oriented
systems, the reader is referred to [23].

2.2 The Temporal Logic UCTL

To use the full potential of specification languages that—
like UML—allow action as well as state changes to be mod-
elled, one needs associated verification techniques that allow
the validation of behavioural properties over one’s model.
Therefore, various temporal logics that allow one to express
both action-based and state-based properties have been in-
troduced recently [3, 5, 10, 18, 19, 28]. The advantage of all
these logics lies in the ease of expressiveness of properties
that in pure action-based or pure state-based logics can be
quite cumbersome to write down. Moreover, their use often
leads to a reduced state space, smaller memory needs and
less time spent for verification. Obviously, the effective gain
depends—as always—on the specific system under scrutiny.

In this paper, we will use the action- and state-based tem-
poral logic UCTL [3].2 UCTL includes both the branching-
time action-based logic ACTL [8] and the branching-time
state-based logic CTL [6]. Its syntax allows one to spec-
ify the properties that a state should satisfy and to com-
bine these basic predicates with advanced temporal opera-
tors dealing with the actions performed:

¢ = true | p| ¢AQ | ~¢ | Ex | An
mou= X | 0xU¢ | dxUy @' | 6xW ' | 63 Wi ¢

Predicates are ranged over by p, state formulae are ranged
over by ¢, path formulae are ranged over by 7 and actions
are ranged over by x. E and A are the path quantifiers “ex-
ists” and “for all”, resp., while X, U and W are the indexed
“next”; “until” and “weak until” temporal operators, resp.
In UCTL, the “weak until” cannot be derived from the
“until” because disjunction or conjunction of path formulae
is not expressible according to the UCTL syntax. The same
holds for any pure branching-time temporal logic [27].

In [2, 13, 14], a less restricted logic (u-UCTL) was defined
and used in combination with previous versions of UMC.

Starting from these basic UCTL operators, it is straight-
forward to derive the standard logical operators V and =,
the well-known temporal logical operators EF (“possibly”),
AF (“eventually”) and AG (“always”) and the diamond and
box modalities <> (“possibly”) and [] (“necessarily”), resp.,
of the Hennessy-Milner logic [16].

The semantic domain of UCTL is a doubly labelled tran-
sition system (L>TS for short) [9]. An L*TS (a.k.a. a Kripke
transition system [28]) is a labelled transition system whose
states are labelled by atomic propositions and whose transi-
tions are labelled by sets of actions.

2.3 The Model Checker UMC

We have developed an on-the-fly model checker for UCTL,
called UMC [26], which allows the efficient verification of
UCTL formulae (i.e. specifying action- and/or state-based
properties) over a set of communicating UML state ma-
chines [35]. The possible system evolutions are formally
represented as an L2TS, whose states represent the vari-
ous system configurations and whose transitions represent
the possible evolutions of a system configuration. More con-
cretely, the states of this LTS are labelled with the observed
structural properties of the system configurations (like the
active substates of objects, the values of object attributes,
etc.), while its transitions are labelled with the observed
properties of the system evolutions (like which is the evolv-
ing object, which are the executed acions, etc.).

The big advantage of an on-the-fly approach to model
checking is that, depending on the formula, only a frag-
ment of the overall state space might need to be generated
and analyzed in order to produce the correct result [4, 11].
The basic idea underlying UMC is that, given a state of an
L2TS, the validity of a UCTL formula on that state can
be evaluated by analyzing the transitions allowed in that
state and the validity of a certain subformula in only some
of the next reachable states, all this in a recursive way. The
current version of UMC uses an on-the-fly model-checking
algorithm which has a linear complexity.

Another interesting feature offered by UMC is the possi-
bility to select a desired subset of system events or object
attributes, and to show the minimized graph of all the pos-
sible system evolutions (traces) in which only the relevant
labels are shown. This allows one to obtain abstract slices of
the system behaviour, for which only certain kinds of inter-
actions are considered. These abstract slices are very useful
for achieving confidence in the overall correctness of the de-
sign. Since abstracted full-trace minimization of an L>TS
requires a full traversal of this L2TS, and moreover has a
high complexity, this functionality is—unfortunately—only
possible for finite and reasonably sized systems.

The current UMC prototype can be experimented via a
web interface [34].

3. AUTOMOTIVE CASE STUDY

A vehicle that leaves the assembly line today is equipped
with a multitude of sensors and actuators that provide the
driver with services that assist in conducting the vehicle
more safely, such as vehicle stabilization systems. Driver
assistance systems kick in automatically when the vehicle
context renders it necessary, and more and more context is
taken into account (e.g. road conditions, vehicle condition,
driver condition, weather conditions, traffic conditions, etc.).
In addition, due to the advances in mobile technology, tele-

phone and Internet access in vehicles is possible, giving rise
to a variety of new services for the automotive domain, such
as handling based on information provided by other vehi-
cles passing nearby or by location-based services in the sur-
rounding. Some of these scenarios, like the one described in
this section, are used to validate the engineering approaches
developed in the EU project SENSORIA [31].

3.1 The On Road Assistance Scenario

While a driver is on the road with her /his car, the vehicle’s
diagnostic system reports a low oil level. This triggers the in-
vehicle diagnostic system to report a problem with the pres-
sure of the cylinder heads, which results in the car being no
longer driveable, and to send this diagnostic data as well as
the vehicle’s GPS coordinates to the repair server. Based on
the driver’s preferences, the service discovery system iden-
tifies and selects an appropriate set of services (garage, tow
truck and rental car) in the area. When the driver makes an
appointment with the garage, the results of the in-vehicle
diagnosis are automatically sent along, allowing the garage
to identify the spare parts needed to repair the car. Simi-
larly, when the driver orders a tow truck and a rental car,
the vehicle’s GPS coordinates are sent along. Obviously, the
driver is required to deposit a security payment before being
able to order any service. Finally, each service can be denied
or cancelled, causing an appropriate compensation activity.

3.2 A UML Specification

In [22], the automotive architecture as defined within SEN-
SORIA is described and the requirements model of the on
road assistance scenario is specified in UML 2.0 using a
UML Profile [23]. This scenario consists of the components:*

e Engine: causes low oil level alert

e Discovery engine: discovers services needed

e Reasoner: selects best services

e Orchestrator: composes services to achieve goal

e Driver: calls garage, tow truck, rental car and bank
e GPS: sends vehicle’s current coordinates to services
e Garage: receives diagnostic data about vehicle

e Tow truck: receives GPS coordinates of vehicle

e Rental car: receives GPS coordinates of driver

e Bank: receives deposit from driver

Since the workflow describing the service orchestration is one
of the most interesting aspects of a service-oriented system,
we depict it in Figure 1 as a UML 2.0 activity diagram.

The orchestrator is triggered by an engine failure (in our
case due to a low oil level) and consequently contacts the
other components to compose the various services to reach
its goal (in our case sending the driver a rental car and a tow
truck to tow the stranded vehicle to a garage). Note that
we use stereotyped UML 2.0 actions to indicate the type
of interactions (<send>, <receive> and <sendAndReceive>) as
well as to model compensations of long-running transactions
(<compensate> and <compensate all>). The actions match op-
erations of required and provided interfaces of the services,
defined as ports of UML 2.0 components.

3Some components of [22] are renamed and (de)composed.

EngineFailure

| v

(- T/ /7 /N esendAndReceives)
| _IEZ?SE':]ZI_QE : @ gps.request.location location
| «send» cehim | asendAndReceives sericeType
| S bank:requestGardGharge amount | @ localDiscovery findLocalSenices logation
| | senvices
| areceives chargelD |
| &3 bank.requestCardCharge | csendAndREEe e location
| J @ remoteDiscovery findSernvices seniceType
= - e senices
; [else]
acompensationEdges L
IxgchargelD
esendAndReceives [senvAvalahle]
@ bank.revakeCharge Lyevoke QK
] [else]
gcompensates
@ cardCharge
esendAndReceives candidates
@oreasoner.selactSenices best
es
e e I e e T s s e e e e i e e
€scopes
0 OrderServices
repairNum
canceIOK «sendAndReceives «sendAndReceives carData
@ ext.cancelGarage . @ ext.orderGarage :
ecompensationEdges repairhum
ssendAndReceives aesendAndReceives location
@ ext.orderTowTruck @ ext.orderRentalCar rentalNum

towTruckMNum

ecompensationEdges

towTruckMNum ecompensationEdges

cancelOK esendAndReceives
@2 ext.cancelTowTruck

esendAndReceives
@ ext.redirectRentalCar

rentalNum
redirectOK

|
|
|
|
|
|
|
|
| location
|
|
|
|
|
|
|
l

«SCOpER

)
i Failure |
|
|
|
|
|

|
P
|

| acompensateAlls fcompensates

| @2 OrderSernvices @3 CardCharge

Figure 1: Orchestration of services.

gcomponents

£] OnRoadAssistance
gcomponents
2] Car
gcomponents
£ Bank
«components fcomponents
& Engi Hj\/ehicle Communication
e ngine 2y Gateway
gcomponents
scomponents scomponents Z1RoadAssistance
Z]Reasoner = | BankCommunication
ecomponents acomponents gcomponents
=]LocalDiscovery = | GarageCommunication =] Garage
ecomponents gcomponents gcomponents
ZIGPS =] TowCommunication = TowTruck
gcomponents gcomponents ecompanents
=] Orchestrator = |RentCommunication = RentalCar

Figure 2: Interplay of state machines.

4. FORMAL VERIFICATION

In this section, we describe the application and results of
formal modelling and verification techniques to the on road
assistance scenario. First, we discuss a specification of this
scenario as a set of communicating UML state machines.
Second, the results of using the model checker UMC to verify
several properties expressed in the temporal logic UCTL are
presented and interpreted.

In the previous section, we presented the on road assis-
tance scenario by means of UML activity diagrams using a
UML Profile for SOC (cf. Figure 1). To carry out a formal
analysis of the system, we need a description of it in terms
of standard UML state machines. It would of course be
highly desirable if the transformation from the activity dia-
grams into the corresponding statechart diagrams were per-
formed automatically, e.g. by applying model-driven trans-
formation techniques based on graph transformations as de-
scribed in [15]. The SENSORIA roadmap already points to
the development of tools going in this direction [21]. For the
current paper, however, we manually performed the required
translation, using the original activity diagrams merely as a
notation to guide the UMC statechart-based design of the
system.

4.1 A Formal Specification

In order to verify behavioural properties over the on road
assistance scenario, its requirements model must be accom-
panied by an operational model formalizing its behaviour.
Since our goal was to use UMC to verify properties ex-
pressed in UCTL, we formally defined the scenario as a set
of communicating UML state machines. The reader can
consult our specification via [34]. Figure 2 depicts the UML
structure diagram of the set of UML state machines and the

subcomponents BankCommunication and Orchestrator are
depicted in Figures 3 and 4, resp.

It is important to note that we have implemented one of
the many possible operational models that can be defined in
accordance with the scenario’s requirements model of [22].
In fact, we made the following assumptions w.r.t. this model:

e We do not define a separate state machine for each
component, but rather structure some of them as sub-
components of others (cf. Figure 2).

e We abstract altogether from a remote discovery state
machine (to search for services in a remote repository).

e LocalDiscovery returns at most one choice of services
for on road assistance.

e Compensations are explicitly modelled as requests to
cancel operations (viz. bankrevoke and garagerevoke).

e All communications between Car’s subcomponents, as
well as those between these subcomponents and Bank
and RoadAssistance (i.e. all service invocations), are
modelled as pairs of request/response signals. Whereas
this is necessary for the former (synchronous operation
calls would deadlock), the latter might equally well be
modelled as synchronous operation calls.

While the single state machines are not very complex, their
interplay is. In fact, the system has 535 states and 814 tran-
sitions and, consequently, validation by hand is not feasible.
Note that their potential interplay is much more complex
still: It suffices to imagine a system composed of several
Cars, Banks, Garages, etc.

BankComm (Defers bankrevoke)

<@

bankcharge /
bank.requestCardCharge...)

chargeResponseFail /

G,_ﬁ self.bankFail
_J

chargeResponseOK(chargelD) /
chargedID := chargelD;
self.bankOK

bankrevokeOK

"))

bankrevoke /
bank.revokeCardCharge(self,chargedID)

Figure 3: Subcomponent BankCommunication.

4.2 Validation with UMC

We have used UMC v3.4 on an ordinary PC to verify a
number of behavioural properties expressed in UCTL over
our implementation of the on road assistance scenario.

Service responsiveness

A service is responsive if it guarantees a response to each
received request. An example of service responsiveness is
expressed by the UCTL formula

AG [requestCardCharge |

A [true true UchargeResponseOK\/ chargeResponseFail true]7 (Fl)

which states that each time action requestCardCharge takes
place, always at a certain moment action chargeResponseOK
or chargeResponseFail takes place. More intuitively: If the
Car requests the Bank to charge a credit card, then the Bank
will surely reply with a notification of either a successful or
a failed attempt to charge the credit card.

We verified formula F1 with UMC and it is true.

Service coordination

A service is coordinated if its confirmation is always pre-
ceded by a request (for this service). An example of service
coordination is expressed by the UCTL formula

-F [true —requestCardCharge UchargeResponseOK true]7 (F2)

which states that it may never happen that action charge-

ResponseOK takes place if action requestCardCharge has not

taken place before. More intuitively: The Car cannot re-

ceive a notification of the fact that the credit card has been

charged, if it did not previously request the Bank to do so.
We verified formula F2 with UMC and it is true.

Service reliability

A service is reliable if it guarantees a successful response
whenever it accepts a request (for this service). An example

of service reliability is expressed by the UCTL formula

AG [requestGarage |

A [true true Uguru.geResponseOK tTue]a (F3)

which states that each time action requestGarage takes
place, always at a certain moment action garageResponseOK
takes place. More intuitively: Reservation requests from Car
to Garage are always followed by a notification of success.

We verified formula F3 with UMC and it is false. Note
that this is not surprising: The Garage service might be tem-
porarily unable to provide the requested service (so it sends
the unsuccessful response garageResponseFail). Note that
the Garage service is responsive, i.e. a formula similar to
formula F1 does hold also for the Garage service.

Uniqueness of response

A service guarantees uniqueness of response if it guarantees
a single successful response whenever it accepts a request
(for this service). An example of the uniqueness of a re-
sponse is expressed by the UCTL formula

AG [requestGarage| AF < garageResponse >
- EF <garageResponse > true, (F4)

in which garageResponse stands for garageResponseOK V
garageResponseFail. Formula F4 states that each time ac-
tion requestGarage takes place, always eventually action
garageResponseOK or garageResponseFail takes place and
afterwards it may not happen that eventually one of the lat-
ter two actions takes place again. More intuitively: After
a reservation request from Car to Garage, it cannot happen
that the Car receives more than one notification.
We verified formula F4 with UMC and it is true.

Functional system behaviour

Often one wants to check specific relations between the ef-
fects of different service invocations. An example of such a
relation is that the success of a service request is always fol-
lowed by either its cancellation or by the success of another
service request, as is expressed by the UCTL formula

AG | chargeResponseOK |

A [tTU@ true Uga'ragcResponseOKVbank’revokc()K true]7 (F5)

which states that each time action chargeResponse0OK takes
place, always at a certain moment action garageResponseOK
or bankrevokeOK takes place. More intuitively: If the Bank
sends the Car a notification of the fact that the credit card
was successfully charged, then in the future either this oper-
ation of charging the credit card will be revoked or the Car
will receive a notification of the fact that the Garage has
been reserved.

We verified formula F5 with UMC and it is true.

The results of the verifications are summarized in Table 1.

formula property validity
F1 service responsiveness true
F2 service coordination true
F3 service reliability false
F4 uniqueness of response true
F5 functional system behaviour true

Table 1: Validation results.

g

engineFailure

=4

N\

bankOKC

)

- / self.bankcharge

(bankFail

CardCharge

EnablingPhase

()

found(mylist)

@

- / self.reqLoc

resploc(mygps) /
loc := mugps;
self.findServ(mygps)

notFound /
\ self.bankrevoke

FindServices

- / choose

\

[ServiceSelection]

garageFail /

chosen(myRA) /
\ theRA := myRA
OrderServices
ol

s / self.ordergarage

o13 self.bankrevom

)

garageOK

TowAnldCar ._)@
ol7 -/
/_self.orderTowTruc
o015
" iC towOK
carRentedC ren towFail
CompensateAll)

failedRentCar

@

| |

! ﬂ [E=
vV self bankrevoke 1 / “self. garagerevoke:

x4 (%5 |

| |

I I

__CompensateBank CompensateGarage

-1
self.rentrevoke

CompensateRent)

~\

OrderCar

OrderTow

v
@®

Figure 4: Subcomponent Orchestrator.

requestCardCharge

Y
Nl‘argeResponseOK

S_2
S_3

chargeResponseFail

revokeCardCharge

#final

‘/revokeCardCharge

requestGarage

S_4
\gglgeReSpOnseOK

garageResponseFail S_5 #final

\
S_6

revokeGarage / revokeCardCharge

S_9

revokeGarage

Figure 5: Abstract behavioural slice.

The verifications show that the requirements model of the
on road assistance scenario has been well designed in [22].

As shown in Figure 5, UMC can also be used to generate,
e.g., all abstract traces of the system obtained by observing
only the interactions of Bank and Garage with Car. Such
graphs give a precise and complete understanding of the re-
lation between the activities of charging a credit card and
of reserving a garage. In fact, formula F5 appears to be just
one of the many logical properties that would need to be
verified w.r.t. these two activities to obtain the same under-
standing. The advantages of verification by means of a set
of formulae are that these can usually be evaluated in an
efficient way also on large or even infinite systems, and that
in case of unexpected behaviour a precise explanation can
be obtained from the model checker by simply illustrating
the sequence of computation steps (and a fragment of the
traversed L?TS) that has led to the verification result.

S. RELATED WORK

Formal methods are intensively used in the transportation
field to rigorously design and develop mission and safety-
critical real-time subsystems. In this sector, the adoption of
formal methods is indeed being encouraged by the need for
certifiable code generators (e.g. according to the DO-178B,
EN 50128 and IEC 61508 standards) and products that can
easily be validated (cf. [30, 32]). Our aim is to carry on ex-
perimental research on temporal logics and other techniques
useful for the formal analysis of service-oriented systems,
rather than to support in a direct way the development of

safety-critical software by developing commercial automatic
code generators or validation tools.

The approach that is probably nearest to ours is that of
the Huco/RT project [20], in which model checking a UML
system is achieved through model translation into the input
language for the SPIN or UPPAAL model checkers [33, 36]. A
recent related approach [12] describes how UML diagrams
can be translated into the Maude language and subsequently
be model checked. While Huco/RT, SPIN and Maude’s
model checker rely on a state-based linear-time temporal
logic (LTL) to express a system’s properties, our prototype
adopts the action- and state-based branching-time temporal
logic UCTL. Moreover, having an in-house model checker
(UMC) for our logics allows us to easily experiment with
the best logical features to specify the desirable properties of
service-oriented systems, exploiting the advantages of both
the on-the-fly approach of the model checker and the linear
complexity of the evaluation algorithm.

6. LESSONS LEARNED

In the context of the EU project SENSORIA [31], we have
used our longstanding experience with formal modelling and
verification techniques, to validate the requirements model
of an automotive scenario from the SOC domain. The spe-
cific on road assistance scenario that we have validated was
one of the outcomes of discussions with automotive experts
on possible new services for drivers to be provided by the
in-vehicle computers. The validation has shown that the
requirements model of the on road assistance scenario has
been well designed.

The case study described in the paper has moreover shown
the usefulness and feasibility of a formal approach to spec-
ifying and rigorously analyzing a system design, also in in-
dustrial contexts. So far, we have not yet tried to use the
model checker UMC for a particularly big and complex sys-
tem, since we have been mostly interested in experimenting
with its functionalities from a more qualitative point of view,
rather than from a quantitative point of view. This is also
the reason for which the case study in this paper has been
kept relatively simple and for which we have not provided
any information in Table 1 on the resource usage and com-
putation time spent.

There is definitely much room for improvement of UMC
still, e.g. regarding the UML support of the tool, regarding
the temporal logic UCTL, regarding further optimizations
of the on-the-fly model-checking algorithm and regarding the
overall usability and user-interface issues.

7. CONCLUSIONS AND FUTURE WORK

This paper describes ongoing work on applying academic
experience with formal modelling and verification (model
checking, to be precise) to an industrial case study on auto-
motive systems taken from the SOC domain. This work is
performed in the context of the EU project SENSORIA [31],
whose aim is to develop a comprehensive and pragmatic—
but theoretically well-founded—approach to software engi-
neering for service-oriented systems. The reader is referred
to [37] for an exemplary overview of some of the service-
oriented techniques and methods that are currently being
developed in SENSORIA.

We defined the on road assistance scenario as a set of
communicating UML state machines, after which UMC was
used to verify a number of properties expressed in UCTL.
The outcome showed that the requirements model of the
on road assistance scenario has been well designed in [22].
The reader is referred to [22] for an overview of related ap-
proaches to the specification and analysis of the on road as-
sistance scenario (and other scenarios from the automotive
case study) that have been developed for the engineering of
service-oriented systems within the scope of SENSORIA.

We have several ideas to extend the work presented in
this paper in the future. To begin with, we would like to
relax some of the assumptions we made w.r.t. the require-
ments model (¢f. Section 4.1): One can think of the addition
of a remote service discovery engine or of more advanced
compensation handling mechanisms. We would also like to
validate more complex scenarios: One can think of a sce-
nario in which several drivers, each with a stranded car,
compete for a limited number of tow trucks. Moreover, we
would like to extend our current implementation to be able
to use the full potential of the action- and state-based tem-
poral logic UCTL: One can think of properties that require
state-based formulae. We also would like to evaluate perfor-
mance issues of the scenario of this paper: One can think of
using a suitable specification language and model checker to
verify also quantitative properties, e.g. by using action- and
state-based stochastic logics [1, 7, 17]. Finally, we would like
to see whether the scenario of this paper is suitable to val-
idate truly specific service-oriented features: One can think
of properties described by means of the service-oriented logic
SocL [10], which is a very recent specialization of UCTL
meant to capture peculiar aspects of services.

8. ACKNOWLEDGEMENTS

The research reported in this paper has been partially
funded by the EU project SENSORIA (IST-2005-016004) [31].

9. REFERENCES

[1] C. Baier, L. Cloth, B. Haverkort, M. Kuntz and
M. Siegle. Model checking action- and state-labelled
Markov chains. In Proceedings of the International
Conference on Dependable Systems and Networks
(DSN’04), Florence, Italy, pages 701-710. IEEE
Computer Society, Los Alamitos, CA, 2004.

[2] M.H. ter Beek, S. Gnesi, F. Mazzanti and C. Moiso.
Formal Modelling and Verification of an Asynchronous
Extension of SOAP. In A. Bernstein, T. Gschwind and
W. Zimmermann, editors, Proceedings of the 4th IEEE
European Conference on Web Services (ECOWS’06),
Zurich, Switzerland, pages 287-296. IEEE Computer
Society, Los Alamitos, CA, 2006.

[3] M.H. ter Beek, A. Fantechi, S. Gnesi and F. Mazzanti.
An action/state-based model-checking approach for
the analysis of communication protocols for
Service-Oriented Applications. To appear in
Proceedings of the 12th International Workshop on
Formal Methods for Industrial Critical Systems
(FMICS’07), Berlin, Germany, volume 4916 of Lecture
Notes in Computer Science. Springer, Berlin, 2008.

[4] G. Bhat, R. Cleaveland and O. Grumberg. Efficient
On-the-Fly Model Checking for CTL*. In Proceedings
of the 10th IEEE Symposium on Logics in Computer
Science (LICS’95), San Diego, CA, USA, pages
388-397. IEEE Computer Society, Los Alamitos, CA,
1995.

[5] S. Chaki, E.M. Clarke, J. Ouaknine, N. Sharygina and
N. Sinha. Concurrent software verification with states,
events, and deadlocks. Formal Aspects of Computing
17(4): 461-483, 2005.

[6] E.M. Clarke, E.A. Emerson and A.P. Sistla.
Automatic Verification of Finite State Concurrent
Systems using Temporal Logic Specifications. ACM
Transactions on Programming Languages and Systems
8(2): 244-263, 1986.

[7] R. De Nicola, J.-P. Katoen, D. Latella, M. Loreti and
M. Massink. Model checking mobile stochastic logic.
Theoretical Computer Science 382(1): 42-70, 2007.

[8] R. De Nicola and F.W. Vaandrager. Actions versus
State based Logics for Transition Systems. In
I. Guessarian, editor, Proceedings Spring School on
Semantics of Systems of Concurrent Processes, La
Roche Posay, France, volume 469 of Lecture Notes in
Computer Science, pages 407-419. Springer, Berlin,
1990.

[9] R. De Nicola and F.W. Vaandrager. Three Logics for
Branching Bisimulation. Journal of the ACM 42(2):
458-487, 1995.

[10] A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti,
R. Pugliese and F. Tiezzi. A model checking approach
for verifying COWS specifications. To appear in
Proceedings of the 11th Conference on Fundamental
Approaches to Software Engineering (FASE’08),
Budapest, Hungary, Lecture Notes in Computer
Science. Springer, Berlin, 2008.

[11] J.-C. Fernandez, C. Jard, T. Jéron and C. Viho. Using
On-The-Fly Verification Techniques for the
Generation of test Suites. In R. Alur and
T.A. Henzinger, editors, Proceedings of the 8th

[21] A. Knapp and G. Zhang. Model Transformations for
Integrating and Validating Web Application Models.
In H.C. Mayr and R. Breu, editors, Proceedings of
Modellierung 2006 (MOD’06), Innsbruck, Austria,
International Conference on Computer-Aided volume 82 of Lecture Notes in Informatics, pages
Verification (CAV’96), New Brunswick, NJ, USA, 115-128. Gesellschaft fiir Informatik, Bonn, 2006.
volume 1102 of Lecture Notes in Computer Science, [22] N. Koch and D. Berndl. Requirements Modelling and
pages 348-359. Springer, Berlin, 1996. Analysis of Selected Scenarios of the Automative Case

[12] P. Gagnon, F. Mokhati and M. Badri. Applying Model Study. SENSORIA Deliverable 8.2a, September 2007.
Checking to Concurrent UML Models. Journal of Available via [31].

Object Technology 7(1):59-84, 2008. [23] N. Koch, P. Mayer, R. Heckel, L. Génczy and

[13] S. Gnesi and F. Mazzanti. On the fly model checking C. Montangero. UML for Service-Oriented Systems.
of communicating UML State Machines. In SENSORIA Deliverable 1.4a, September 2007. Available
Proceedings of the 2nd International Conference on via [31].

Software Engineering Research, Management & [24] P. Liggesmeyer, M. Rothfelder, M. Rettelbach and
Applications (SERA’04), Los Angeles, CA, USA, T. Ackermann. Qualitéitssicherung Software-basierter
pages 331-338, 2004. Technischer Systeme—Problembereiche und Losungs-

[14] S. Gnesi and F. Mazzanti. A Model Checking ansitze. Informatik Spektrum, 21(5):249-258, 1998.
Verification Environment for UML Statecharts. [25] Z. Manna and A. Puueli. The Temporal Logic of
Presented at the XLIII Annual Italian Conference Reactive and Concurrent Systems—Specification.
AICA, Udine, 2005. Springer, Berlin, 1992.

[15] L. Génczy and D. Varré. Model-Driven [26] F. Mazzanti. UMC User Guide v3.3. Technical Report
Transformations for Deployment—Prototype. 2006-TR-33, Istituto di Scienza e Tecnologie
SENSORIA Deliverable 6.4a, September 2007. Available dell’Informazione “A. Faedo”, CNR, 2006.
via [31]. http://fmt.isti.cnr.it/ WEBPAPER /UMC-UG33.pdf

[16] M. Hennessy and R. Milner. Algebraic Laws for [27] R. Meolic, T. Kapus and Z. Brezo¢nik. ACTLW — An
Nondeterminism and Concurrency. Journal of the action-based computation tree logic with unless
ACM 32(1): 137-161, 1985. operator. Information Sciences 178(6): 1542-1557,

[17] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser and 2008.

M. Siegle. Towards model checking stochastic process [28] M. Miiller-Olm, D.A. Schmidt and B. Steffen.
algebra. In W. Grieskamp, T. Santen and B. Stoddart, Model-Checking—A Tutorial Introduction. In
editors, Proceedings of the 2nd International A. Cortesi and G. Filé, editors, Proceedings of the 6th

Conference on Integrated Formal Methods (IFM’00),
Dagstuhl, Wadern, Germany, volume 1945 of Lecture
Notes in Computer Science, pages 420-439. Springer,
Berlin, 2000.

M. Huth, R. Jagadeesan and D.A. Schmidt. Modal
Transition Systems: A Foundation for Three-Valued
Program Analysis. In D. Sands, editor, Programming
Languages and Systems—Proceedings of the 10th
European Symposium on Programming (ESOP’01),
Genova, Italy, volume 2028 of Lecture Notes in
Computer Science, pages 155-169. Springer, Berlin,
2001.

International Symposium on Static Analysis (SAS’99),
Venice, Italy, volume 1694 of Lecture Notes in
Computer Science, pages 330-354. Springer, Berlin,
1999.

A. Saad. Java-based Functionality and Data
Management in the automobile—Prototyping at
BMW Car IT GmbH. JavaSPEKTRUM. SIGS
Datacom, March 2003.

SCADE suite. http://www.esterel-
technologies.com/products/scade-suite/

EU project SENSORIA (IST-2005-016004).
http://www.sensoria-ist.eu/

[19] E. Kindler and T. Vesper. ESTL: A Temporal Logic
for Events and States. In J. Desel and M. Silva,
editors, Proceedings of the 19th International

[32] SPARK toolset. http://www.praxis-his.com/sparkada/
[
Conference on Application and Theory of Petri Nets {
[
[

33] SPIN model checker. http://www.spinroot.com

34] UMC model checker. http://fmt.isti.cnr.it/umc/

35] Unified Modeling Language. http://www.uml.org/

36] UPPAAL tool. http://www.uppaal.com

37] M. Wirsing, A. Clark, S. Gilmore, M. Holzl,
A. Knapp, N. Koch and A. Schroeder. Semantic-Based
Development of Service-Oriented Systems. In
E. Najm, J.-F. Pradat-Peyre and V. Donzeau-Gouge,
editors, Proceedings of the 26th International
Conference on Formal Techniques for Networked and
Distributed Systems (FORTE’06), Paris, France,
volume 4229 of Lecture Notes in Computer Science,
pages 24—45. Springer, Berlin, 2006.

(ICATPN’98), Lisbon, Portugal, volume 1420 of
Lecture Notes in Computer Science, pages 365—384.
Springer, Berlin, 1998.

[20] A. Knapp, S. Merz and Ch. Rauh. Model
Checking—Timed UML State Machines and
Collaborations. In W. Damm and E.-R. Olderog,
editors, Proceedings of the 7th International
Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems (FTRTFT’02), Oldenbury,
Germany, volume 2469 of Lecture Notes in Computer
Science, pages 395—-414. Springer, Berlin, 2002. See
also http://www.pst.ifi.lmu.de/projekte/hugo/

